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INFLUENCE OF PULSE SHAPE ON THE FINAL PLASTIC
DEFORMATION OF A CIRCULAR PLATEf?

CarRL K. YOUNGDAHL

Engineering and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439

Abstract—A closed-form solution is obtained for the dynamic plastic deformation of a simply-supported circular
plate subjected to a pressure pulse of general shape. It is shown that the final plastic deformation is strongly
dependent on the pulse shape. However, the effect of the pulse shape can be characterized by an effective pressure
defined in terms of simple integrals of the pressure-time function.

1. INTRODUCTION

THE dynamic plastic deformation of a simply supported rigid-plastic circular plate (Fig. 1)
subjected to a uniform pressure P(t) having a rectangular pulse shape is treated extensively
by Hopkins and Prager [1]. A closed-form solution will be derived here for the general
pulse shape given by Fig. 2. It will be shown that the amount of plastic deformation is
strongly dependent on the pulse shape for pulses which have the same impulse and maxi-
mum pressure; the effect of the pulse shape is eliminated, however, for pulses which have
the same impulse and effective pressure. The effective pressure is defined as the impulse
divided by twice the mean time of the pulse, with the mean time being the interval between
the onset of plastic deformation and the centroid of the pulse.

Perzyna [2] extended the Hopkins and Prager [1] solution to other pulse shapes and
found little influence of the pressure—time function on the final deformation. However,
his pulse shapes were initially rectangular followed by various types of decays, so that
they were close to the rectangular shape in form and effect. Hodge [3] showed that the
dynamic plastic deformation of a reinforced circular cylindrical shell was strongly in-
fluenced by the pulse shape for pulses with the same impulse and peak value. Symonds [4]
found less pulse-shape dependence for a beam subjected to a dynamic force; however,
his results are for maximum loadings which greatly exceed the yield load. The author [5]
has shown that the effect of pulse shape on the results of the Hodge and Symonds papers
can be eliminated if the pulses have the same impulse and effective value, with the effective
value being defined analogously to the effective pressure used here.

Wang [6] investigated the plastic deformation of a simply supported circular plate
loaded impulsively. Perrone [7] and Wierzbicki [8] included the effects of strain-rate
sensitivity and viscoplasticity, while Jones [9] considered the influence of membrane
forces on finite deflections, as well as strain-hardening and strain rate sensitivity.
Conroy [10] solved the problem of a simply-supported plate loaded dynamically over a
portion of its surface, and Florence [11] treated the corresponding clamped plate problem.
Solutions for other clamped plate problems are given by Wang and Hopkins {12], Shapiro

1 Work performed under the auspices of the U.S. Atomic Energy Commission.
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FiG. 1. Circular plate.

[13] and Jones [14, 15]. Experimental results for dynamically loaded, plastically deformed
plates are presented by Florence [16], Duffey and Key [17] and Wierzbicki and
Florence [18].

The statement of the problem presented in the next section is an abbreviated version
of the thorough exposition given by Hopkins and Prager [1]. A closed-form solution for
general pulse shapes such that a hinge band is not formed is derived by Perzyna [2] in
a somewhat different form from that obtained in Section 3 of this paper. He divides pulses
which produce hinge bands into two categories, “‘blast” and “‘impact” loads. Blast
loads are those that rise instantaneously to their maximum value and decay thereafter,
while impact loads attain their maximum in a non-zero time interval. Perzyna derives
the differential equation for the hinge circle motion corresponding to blast loads and
solves it numerically for two pulse shapes; he does not treat impact loads. A closed-form
solution for both types of loads is derived in Section 4 of this paper. (Blast loads may be
considered to be a special case of impact loads by letting the rise time of the pulse go to
zero.) A closed-form expression for Perzyna’s numerical results may be obtained by sub-
stitution of his pulse shapes into the solution given here. In Section 5, deformation resuits
for a variety of pulse shapes are presented. It is shown that the effect of the pulse shape on
the final plastic deformation is eliminated if the effective pressure is used to characterize
the pressure pulse, the effective pressure being defined in terms of the integral of the pulse
and its first moment.

P{t)
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F1G. 2. General pulse shape.
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2. STATEMENT OF PROBLEM

Under the usual assumptions of the small deflection theory of thin plates, the equation
of motion of the simply supported circular plate of Fig. 1 is

a
E(rM,)—Md, =rQ

r o*w
= —P4+yu—— 3
J; [ +u P }rdr

where M,, M, and Q are the radial bending moment, circumferential bending moment
and vertical shear force per unit arc length, respectively, P is the applied pressure, u is the
mass per unit surface area and W is the downward deflection of points lying in the middle
surface. The quantities M,, M, Q and W are functions of radius r and time ¢; P will be
taken to be a function of time only and may have the general shape shown in Fig. 2. Let
the plate radius be R, the lateral velocity of the plate be denoted by V(r, t) and the radial
and circumferential rates of curvature be denoted by k, and k,, respectively. Then

2.1)

ow
V=t 2.2)
k%
K, = ‘-—ar—z, (23)
1oV
K¢ = —; E (2.4)

The material of the plate is assumed to be rigid, perfectly plastic, and insensitive to
strain rate. The Tresca yield condition of Fig. 3 will be used here. The flow rule states that
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Fi1G. 3. Tresca yield condition.
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the flow vector with components «,, k4 is in the direction of the outward perpendicular
to the yield locus at the yield state (M,, M ).

The three plastic regimes occurring in the plate under uniform load are point A,
segment AB and point B of Fig. 3. From the yield condition and the flow rule, the con-
ditions on the bending moments and rates of curvature for these regimes are:

Regime A: M,= M, =M;,k, 20,1, >0. (2.5)
Regime AB: 0 <M, <My, My=M;,k,=0,k,20. (2.6)
Regime B: M, =0,M, = M;,k, > —k, = 0. 2.7

During the plastic deformation of the plate subjected to uniform pressure
M¢=M0, OSTSR. (2.8)

The simply supported outer edge of the plate is in regime B; i.e.
V=W=M,=0 atr=R. 29)

For load histories such that no hinge band appears, the center of the plate is in regime A,
so that

M,=M, atr=0, (2.10)

while the remainder of the plate is in regime AB, which means, using equations (2.3),
(2.4) and (2.6),

v _

oV
= —< . .
0<M, <M,, 57 0, ar_O for0 <r <R (2.11)

If a hinge band of radius p(t) grows out from the center of the plate, the entire band is
in regime A so that

v
M, =M,, WSO, —0?50 forO0<r<p, (2.12)

while the remainder of the plate is still in regime AB;

4 ov
O0<M, <My, —-5=0 —<0 forp<r<R (2.13)
or or

The initial condition of the motion is that the plate is at rest until time ¢, when the
yield load is first reached. Consequently

Vir,t) = W(r,t,) = 0. (2.14)

The equation of motion (2.1) must be solved subject to the initial conditions (2.14)
and the boundary conditions and restrictions (2.8)2.11) if there is no hinge band. If a
hinge band appears, equations (2.10) and (2.11) are replaced by equations (2.12) and (2.13).

The restrictions on the continuity of M,, M,, W and their derivatives are discussed
in detail in [1). The arguments will not be repeated here ; the conclusions pertinent to this
problem are: W, V, M, and 0W /0r are continuous in r and ¢, but across a moving hinge
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circle p(t) the discontinuity conditions
ov) dp{a*w
{—67} +E;{ or? } 0,
ov)  defav
ot dt | or
oM, + dp [oM,
ot dt | or

must be satisfied. In equations (A-11), { f} denotes the discontinuity in f across p.

0, (2.15)

0,

3. SOLUTION FOR NO HINGE BAND (P, <P,)

Guided by the static limit analysis of Hopkins and Prager [19], take the initial velocity
distribution as

Vo) = Vo(r)(R ’), (1)
R

where V, is the velocity at the plate center. The condition in equations (2.9) that V vanishes

at r = R and the conditions on 8%V /dr? and 0V/dr in equations (2.11) are satisfied by

equation (3.1). The substitution from equations (2.8), (2.2) and (3.1) into equation (2.1),

followed by integration with respect to r and the use of the boundary conditions (2.9)

and (2.10) on M,, results in

4% _ 2 piy—
T = S PO-R) 3.2)
M, = (R6;r)[P(t)r2+Py(R2+Rr—-r2)], (33)

where the static yield load P, is

P, =0 (3.4)

The solution of the differential equations (2.2) and (3.2) is, using equation (3.1) and the
initial condition (2.14),

v == [ [P()— P, dr, (35)

W = - [ =P -P1ds, (6)
By,

Wi, 1) = wa(t)(R; ’), 37

where Wy(t) is the displacement at the plate center.
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Because M, = M, and éM,/dr = 0 at r = 0 [see equation (2.1)] the condition that
M, < M, throughout the region 0 < r < R will be satisfied if » = 0 is a local maximum
of M,; ie.

6—;;‘?<0 atr =20, (3.8)
which by equation (3.3) is equivalent to
P(t) < 2P,. (3.9)
Define
P, = 2P, (3.10)

as the load at which a hinge band is initiated. The condition that P(t) does not produce
a hinge band is then

Pmax < Pb' (311)

The plastic deformation ends at time t, when V(r, t) vanishes. By equations (3.1) and
(3.5), t is found from the solution of

f ! P(t)dt = Pft,—1). (3.12)

¥

Equation (3.12) has the interpretation that the average pressure over the interval of defor-
mation is the yield load.

Define the impulse I per unit area, the mean time ¢,,.,, of the pulse, and the effective
pressure P, by

ty
I= J P() de,

1 (v
Imean = 7 (t—¢,)P(1) dt, (3.13)
ty
I
Pe - Ztmean.

The final plastic deformation at r = 0 is found from equations (3.6), (3.12) and (3.13) to be

I? P
Wlt,) = —|[1 -2 )
olts) ,uP},(l Pe)’ (3.14)

and W(r, t;) is easily determined from equations (3.7) and (3.14).

4. SOLUTION FOR DEFORMATION WITH HINGE BAND (P, > P)

Interval t, < t < t,. The solution given by equations (3.3) and (3.5)3.7) is applicable
up to the time t, when the pressure first reaches the value P, and 9°M,/0r* = O at r = 0.
At t, a hinge circle p(t) separating the region of the plate in regime 4 from the region in
regime AB begins to move out from the origin.

aX
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Interval t, <t < t,,,. The substitution from equations (2.8) and (2.12) for M, and M,
into the partial differential equation (2.1) results in the integral vanishing for arbitrary r
in the region 0 < r < p(¢). This implies that the integrand must be identically zero, or,

av
usr = PO 4.1)

The solution of equation (4.1) is

3

uVv(r,t) = f P(t)dt+Q(r), 0<r<op@, 4.2)
iy

where Q(r) is an arbitrary function determined from the continuity of the velocity at the

edge of the region. Letting V(t) be the instantaneous lateral velocity at the hinge circle,

ie.

V(1) = Vip(r), 1), (4.3)

Q is found from

t
%) = ¥, | P, (@)
ty
where t is viewed as a function of p rather than the converse.
Since the integrand in equation (2.1) is identically zero for 0 < r < p(t), the governing
partial differential equation for the region p(tf) < r < R is, using equations (2.8), (3.4)
and (2.2),

0 | S, " ov
— =- — — . 4,
ar(rM,) 6PyR + J:,l: P(t)+u 6t:|r dr 4.5)
Using the relations (2.13) and (2.9), the expression for V(r, t), analogous to equation (3.1)
which applies up to t,, will be taken as
R—r

Vit = V({t)——, <r<R, t<t<t, 4.6

(0 =Vog o PST , 46)
where ¢, is the time when the hinge band shrinks to the origin. Integration of equation (4.5)
with respect to r and application of the boundary condition on M, given in equation (2.9)
and the continuity of M, at r = p then give

d/ v, ) 2 [ R*P,
— = - +(R+2p)P |, @.7)
dt\R—p|  uw(R—p)(R+3p)| (R—p)
R—r R?P,
M, = R3r+ R?r? —Rr®—4Rp* + 3p* >
6r(R~p)(R+3p)[( PRy
4.8)
+(Rr+2Rp+2rp+p2)(r—p)2P],p <r<R, t,<t<t,.
The condition that M, should not exceed M, in the region p < r < R implies
2
0 M'SO atr = p*. 4.9)

or?
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Using equation (4.8), this is equivalent to
(R+p)R—py*P <2P,R}, n<t<1,. (4.10)

When the hinge band is initiated, the radius of the hinge circle is zero and the pressure
has the value 2P, by equation (3.10). Consequently, the equality in (4.10) holds at ¢ = ¢,.
We will hypothesize that the equality continues to hold in the entire interval ¢, <t < ¢_,.,
so that p(t) is determined by the solution of the cubic equation

2P,R

[R+p()][R—p(0)]* = PO

ty <1< b @.11)

The basis of this hypothesis is as follows: the differentiation of equation (4.11) yields

dp 2PR® 4P

dt ~ (R—p)(R+3p)P? dt’ (4.12)

Since dp/dt and dP/dt have the same sign and vanish at the same time, p(t) attains its
maximum when P = P, .. Equations (4.11) and (4.12) imply that the hinge circle is
“pushed” out from the origin to its extreme position as the pressure increases from P,
to P, . A value of p less than that which satisfies equation (4.11) would cause the inequality
(4.10) to be violated. It can be shown that a solution for the plate deformation obtained
by using equation (4.11) satisfies the differential equations, boundary conditions and the
discontinuity conditions (2.15), and is therefore the correct solution.
Combining equation (4.11) with (4.8) gives

M, R(r+p)(r—p)’
LA Pt LA S <r<R, 1, <t< o 4.13
Mo~ THREOR=p® P ST : @19
while equation (4.7) reduces to
i‘l( Y ) I (4.14)
dt\R—p| wR-p)
We integrate equation (4.14) to obtain
1 P V(t)
Vi) =[R—plt [-«f dr+--2 . 4.15
g POl ) R=@ T R= i) (13

Since V(t,) = V(1) and p(t,) = O, we have from equation (3.5) that

2 (*
Vi) =~ f, [PO)-B)de (4.16)

Substituting from equations (4.15) and (4.16) into equation (4.6) gives

R—r[_ [* P() '»
V ’ = R - .
(r t) HR L j;bR’—p(‘[)dt_i_zJ;y [P(‘!T) P).]df}, pS?‘SR, tbStStmax

@17
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The plate displacement is then found by integrating the velocity and applying the con-
tinuity conditions at t,, using equations (3.6) and (3.7). The result is

W, 1) = Ry;’ {R ' %’-Z%) dr+2 f (t—17)[P@)-P] dt} :

perR, tbststmax'

(4.18)

We return now to the region 0 < r < p in order to determine () from the continuity
of the velocity at the hinge circle. The solution p(t) to equation (4.11) can be inverted to give

t= ﬂ(p)’ 0 < p < Pmax> tb <t< Lnax (419)
with
_pa|  2PR
Blp) = P~1 [m——p)’:l’ P, < P(t) < Po,. (4.20)

By equations (4.4), (4.15), (4.16) and (4.19), we have
Be)  p(7)
w R—p(7)

Qp) = (R— p)[ dr+2 f " [P(t)—P,] dr]

50) 4.21)

- P(t) dta 0< P = Pmax-

ty
Substituting this result into equation (4.2) then gives
P(7)
R—p(7)

¢ B(r)
uv(r,t) = P(z)dt+(R—7) J-
B(r) ty
2(R—r)
+ R

dz

13
.[ [Pt)—PJdr, O0<r<p, t,<t<t. (422
ty

The displacement is found by integrating V(r, t) with respect to time and applying con-
tinuity conditions at t = t,; the result is

o 50 (t —1)P(z)
pw(r, 1) = -L(r) (t=0)Pc)de+(R—1) -[b R—pl) "

2AR-7)
R

0<r<p t,<t<t,.

+

ftb(t —1)[P(t)—P,] d1, 4.23)

The upper limit of the interval of applicability of these last two equations is ¢, rather than
tmax @s Will be explained in the next section.

In summary for the interval t, < t < t,,,., the hinge circle radius is found from equa-
tion (4.11), and the plate velocity and displacement are given by equations (4.22) and (4.23),
respectively, in the interior of the hinge band and by equations (4.17) and (4.18) in the
exterior region. Performing the required differentiation on either side of the hinge circle,
it can be shown that the discontinuity conditions (2.15) are satisfied; in fact, all the deriva-
tives appearing in equations (2.15) are continuous at the hinge circle. Properly speaking,
p(2) should be referred to as a plastic regime boundary in the interval ¢, < t < ¢, since
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the term ‘“‘hinge circle’” implies a discontinuity in ¢V/0r at p. However, such a discon-
tinuity occurs for t,,, <t < t,so that p is both a hinge circle and a regime boundary in
the latter interval. Consequently, there seems little point in making the distinction in ter-
minology.

Since f(0) = ¢t,, we have from equations (4.22) and (4.23) that the velocity and dis-
placement at the center of the plate are given by

uVlt) = f ' P(r)de+2 f [P()— P,] dr,

uWylt) = j (= 1)P() di 42 'f * (t=7)[P0)— Pl dt, (4.24)

t,<t<t,

Interval t,,, <t < t,. Equations (4.1)-{4.10) remain applicable for this time interval.
However, making the assumption that p(t) is still given by equation (4.11) would produce
results which would violate the discontinuity conditions (2.15). Since p{t) now starts to
move back toward the origin, the function €X(r) is known for every position r < p which
occurs during this time interval. Consequently equations (4.22) and (4.23) are still valid for
the velocity and displacement inside the hinge band, as are equations (4.24) for the central
velocity and displacement. We must still determine p(f) and the velocity and displacement
outside the hinge band.

Letting r = p in equation {4.22), we can write

,lll/;(t) 1 t Bip) P(T)
D L poydet | e
R—p R—p ly, b R—p(1)

J% f [P(t)—P,] dr, (4.25)

tmax <t < L,

Differentiating equation (4.25) with respect to time gives
a( v, ) dp 1 f P()
H— =— P{tydr+——. 4.26
dt(R—p dt (R—p)? Jy, ) R—p (4.26)

Eliminating d/d«(V,/R— p) between equations (4.7) and (4.26) then gives a differential
equation for p; this equation is, after some algebraic manipulation,

i—’;(R —pHR+3p) ! P(tydr— P(t)(R+ p)(R—p)* + 2PyR3 = (. 4.27)
Bp}

Observing that
d
P [(R+p)(R—p)*] = —(R—p)(R+3p), (4.28)

we can integrate equation (4.27). Using the continuity conditions at ¢,,,,, we find that the
equation which determines p(z) is therefore

" peyde BRI

- < . .
o R+p)R_pp ‘e STSE (4.29)

max —
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The hinge circle motion ceases at t, when p = 0. Since, by equation (4.19), f(0) = t,,
the time ¢, is found from equation (4.29) to be determined by solving

r P(6)dt = Pyt,—t,). (4.30)

The last equation has the interpretation that the average pressure over the interval when
the hinge band exists is the pressure at which the band is initiated.

The velocity distribution outside the hinge band region is found from equations (4.6)
and (4.25) to be

R— t B p
uvir, o) = R_:’L( )P(r)dr+(R—r)f Rf(;)(r)dr

2(R r)

J-[P(t) Pldr, p) <r<R, tuu<t<t. (431)

A derivation of the deformation profile in the region p < r < R is given in Ref. [5] and
will not be repeated here.

The discontinuity conditions (2.15) are satisfied in the interval ¢, <t < t.. Unlike
the previous interval, a discontinuity in 8V/0r occurs at p, so p is properly called a hinge
circle. From equations (4.8) and (4.27), we have that

2
oMy _ LA by (432)
or* |,=,+ R—p dt Jg,

Since p decreases in this time interval and the integral is non-negative, the inequality
(4.9) holds and the yield condition is not violated in the region p < r < R.

Interval ¢, <t < t,. Since the hinge band has disappeared, equations (3.1)+3.3) apply
in this interval as they did in the initial interval t, < t < t,. After performing straight-
forward integrations with respect to time we have

wvie = 2870

f [P(:)— P, dr,

uW(r,t) = Z(RR L

{J (t—7[P(x)—P,]dt
4.33)

_ j * (t.—~9)[P@)—P] dr} +uW(r, ),

0<r<R, t<t<t.

In particular, using the second of equations (4.24), we have

W) = 2 [Pe)-P)dr,
uW(t) = 2 j ' (t=)[P@) - P,) di—2 J‘C (t.—1)[P(z)— P,] dt 434)

tc
+ f (t,—7)P(r)dz, t<t<ty.
43
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The time ¢, is when the plate deformation ceases; therefore by the first of equations
(4.33), t; is determined from equation (3.12) again.

Evaluating W(t,) from equation (4.34), using equations (4.30) and (3.12), we have,
after some algebraic rearrangement,

1 tr 2 1 te 2
yWO(t,)=—I;[ P(t)dt:| _ZI_’[ J P(t)dt]

. . (4.35)
-2 (—t)P()dt+ f (t—t,)P(t)ds.
ty ty
Define I*,t¥ ... and P* by
te
I* = J P(t) dt,
tp
Ehean = f (e—t)P(®) dr, (4.36)
* * .
¢ 2t;ean
Then from equations (4.35), (4.36) and (3.13) we have
_nr y 1* 2

5. RESULTS

In the load range P, < P,,,, < 2P,, equation (3.14) shows thatt W(¢,)/I 2 is just a func-
tion of the effective pressure P,. For very large peak values of the pressure, I* — I and
P* - P,. Consequently, from equation (4.37)

G (3 P,

Wolty) = —|=— as P,

plimap] * Pee 5.

The final plastic deformation was calculated from equations (3.14) and (4.37) for various
families of pulse shapes defined by:

Rectangular
P=P,, O0<t<t,, P =0, t>t,. (5.2)
Linear decay
t
P = (I_T)P"‘”"’ 0<t<t,, P =0, t>t,. (5.3)
2
Exponential decay
P=P_, e, t=>0. (5.4)

t Dividing W(t,) by I* eliminates the effect of the arbitrary time scale factor inherent in plasticity problems.
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Triangular
2t
P="Pp 0131,
L7
t
P= 2(1—7)Pm,‘, Ity <t <y, (5.5)
4
P = 0, t > t4-
Half-sine

. t
P=P__sin (7;— . 0<t<ts, (5.6)

5

P=0, t>ts.

The effective pressures for each of these pulse shape families are computed from equa-
tions (3.13), using equation (3.12) to find ¢ ; the results are shown in Fig. 4 as a function of
peak pressure. For pulses which produce hinge bands (P,,,, > P,), I* and P¥ are computed
from equations (4.36), using equation (4.30) to evaluate ¢,.

The effect of pulse shape on the final plastic deformation of the plate is illustrated in
Figs. 5 and 6. The results are shown in Fig. 5 as a function of P,,,, and in Fig. 6 as a function
of P,. We see that there is a strong dependence on the pulse shape if P, is used to charac-
terize the pulse, especially for peak loads in the vicinity of P,. However, the pulse shape
effect is essentially eliminated if the effective pressure P, is used to characterize the pulse
shape.

U R
61— —
51— RECT,
a> LIN,
Ser
af SINE
3l TRI _
EXP.
21— —
| | I I | 1
| 2 3 4 5 6 7
Pmax /Py

F1G. 4. Effective pressures for various pulse shapes.
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o7 ; T_.__‘k,,

F'mox/Py

F1G. 5. Maximum deformation as a function of the maximum pressure for various pulse shapes.

07
0.6 — SINE -
LIN.
N 0-5 F RECT. ]
- TRI.
S L
U EXP. —
@

R/Py

F1G. 6. Maximum deformation as a function of the effective pressure for various pulse shapes.
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6. CONCLUSIONS

A closed-form solution has been obtained for the dynamic plastic deformation of a
simply-supported circular plate made of a rigid, perfectly plastic material and loaded by
the general pulse of Fig. 2. It is shown that the final plastic deformation, which is a functional
of the pulse shape, cannot be viewed as a function of the peak pressure and impulse. How-
ever, the final plastic deformation can be considered to be a function of the impulse and
an effective pressure defined in equations (3.13). This is particularly encouraging for experi-
mental applications since the effective pressure depends only on simple integrals of the
pulse and is consequently insensitive to inaccuracies in pressure-time measurements.

Another interesting result of the analysis is provided by equations (3.12) and (4.30).
From these equations it can be concluded that the average pressure over the interval of
plastic deformation is the yield pressure and the average pressure over the interval of
hinge band existence is the pressure which produces the band. These time intervals thus
may be predicted a priori from the pulse shape without determining the deformation
history. Experimental verification of these relations again would appear to be relatively
straightforward.
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AGcrpakr—Ilony4aercss pelleHHE B 3aMKHYTOM BHAE IS JHHAMHYECKOH ILUTacTHYecKoil nedopmanmm,
cBoboHO oneprol Kpyrjiod IUIACTHHKH, MOOBEPKECHHON AEHCTBHIO MMIYJIbCa OaBiieHn oOwmedt Gopmsi.
VKa3aHo, YTO OCTATOYHAS IUTACTHYECKas nehopMaums OveHb 3aBHCHT OT ¢opMbl uMmnynsca. Ho naxe,
3¢dexT GopMBI HMIYIIBCA MOXHO XapaKTepu3oBaTh 3¢QeKTHBHBIM [NaBREHHWEM, ONMWUCAHHBIM B BMJE
HMPOCMBIX ITHMEMPAHOB PYHKIIM YabHEMMHA 1l bPEHEHM.



